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Abstract

In this paper, Second generation Wavelet Transform (SGWT) has been implemented along with the traditional discrete Wavelet
Transform (DWT) for localization of different types of power quality (PQ) disturbance signals. Selected features havebeen extracted
from the detail coefficient of the variants of WT and then fed as inputs to the classifiers in order to characterize the signals.
Moreover, a comparative assessment of the PQ signal carriedout with Multilayer perceptron (MLP) and Hidden Markov Models
(HMMs). For localisation of power quality disturbances, the signals have been analysed upto four decomposition levelswhereas
for classification the signals are decomposed for seven decomposition levels. In order to represent in realistic environment, these
proposed techniques are tested with the three phase voltagesignals captured from transmission line panels. Further, to aid these PQ
disturbance detection, different types of real time transmission line fault signals are also characterized with theseaforementioned
approaches.

I. I NTRODUCTION

The Power Quality disturbance (PQD) study has become an emerging issue in the area of power system, as the disturbances
affect the overall harmony of the system. The proper and the continuous monitoring of the power quality disturbances has
become a significant issue both for the utilities and the end-users. The operation of the power system can be improved by
analyzing the PQ disturbances consistently. Hence, the development of the techniques and the methodologies in order to
diagnose the power quality disturbances has acquired greatimportance in research. The PQ is actually the combination of
quality of the voltage and the quality of current [1], [2] butin most of the cases, it is generous with the quality of voltage as
the power system can only control the voltage quality. Hence, the yardstick of the power quality area is to preserve the supply
voltage within the tolerable limits [3], [4]. The maintenance of quality of power in terms of voltage requires proper selection
of the suitable detection and the characterisation methods. These are the crucial steps for maintenance of healthy power system
by mitigating the PQ disturbances.

In order to identify the disturbances, the different techniques such as the Fourier transform (FT), the short-time Fourier
transform (STFT), wavelet transform (WT), Neural Network,Fuzzy logic, S-transform have been used [5], [6]. The FT is a
fast technique which only provides the information about the frequency component. So, FT is unsuitable for the analysisof
non-stationary signal. On the other hand, the time frequency information related to the disturbance waveform can be obtained in
STFT [7]. However, STFT is not suitable to track the transient signals perfectly due to its fixed window property [8]. Similarly,
the S-transform suffers from computational burden which limits its applications [9]. The wavelet transform affords the time-
scale analysis of the non-stationary signal due to Multi-Resolution Analysis (MRA) property. The property of MRA of WT
represents the signals into different time-scales rather than the time-frequency like the STFT. Thus, WT is a suitable technique
for analysis of the transient signals as it provides long window at low frequencies and short window at high frequencies [10].

The time plays an important role in the power system operation. One of the important issues of PQ problem is the fast
mitigation of the disturbances. Fast detection and localization of the disturbances promote the fast mitigation. In other words, the
fast detection of PQ disturbance is becoming an important factor in deregulated market. Both, Discrete Wavelet Transform(DWT)
and Second Generation Wavelet Transform(SGWT) decomposition techniques are applied to detect and localise the different
types of power quality disturbances.

The accurate detection of the PQ disturbance is the important performance indices in power quality analysis. The automatic
detection of PQ events with the discrete wavelet transform (DWT) is a common topic in past studies [11], [12]. The time
plays an important role in the power system operation. One ofthe important issues of PQ problem is the fast mitigation
of the disturbances. Fast detection and localization of thedisturbances promote the fast mitigation. In other words, the fast
detection of PQ disturbance is becoming an important factorin deregulated market. Both, Discrete Wavelet Transform(DWT)
and Second Generation Wavelet Transform(SGWT) decomposition techniques are applied to detect and localise the different
types of power quality disturbances.
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In order to reduce the memory consumption, the features has been extracted from the detail coefficients of the WT
decomposition instead of giving the raw data directly. In this paper, the traditional DWT and the SGWT are integrated with
the feature extraction [13], [14] of PQD signals which is followed by classification. However, the most common automated
classification models are based on the Artificial Neural Network (ANN) [15], [16], fuzzy and neuro-fuzzy systems [17], [18],
[19]. But the main disadvantage of ANN based classifier is therequirement of retraining when a new phenomenon is added.
In this paper, the traditional DWT and SGWT are integrated with the feature extraction [13], [14] of PQD signals which is
followed by classification. The Multilayer perceptron(MLP) and the Hidden Markov Models (HMMs) have been implemented
to classify the PQD signals.

This paper organized as follows. The Section-II describes the theory of the Second Generation Wavelet Transform (SGWT)
along with the Discrete Wavelet transform (DWT). The feature extraction processes are presented in the Section-III. Section-IV
provides the brief theory about the classifiers. Similarly,the Section-V deals with the construction of PQ model as wellas
the effectiveness of SGWT and DWT in the localization of the PQ disturbances. The classification results are presented inthe
Section-VII. Finally, Section-VIII provides the concluding remark.

II. L OCALIZATION APPROACH

The basic block diagram of the classification of PQ signals which is preceded by decomposition and feature extraction. The
detection of the PQ disturbance has been carried out with thehelp of DWT and the MODWT. These have been described
briefly in this section while the feature extraction and classification are described in the subsequent sections.

A. Continuous Wavelet Transform

The wavelet transform represents the signal as a combination of the wavelets at different location (position or amplitude)
and scales (duration or time). The continuous wavelet transform generally implements for the continuous time signal analysis.
The surface of the wavelet coefficients has been obtained from the different values of the scaling and the translation factors.
Mathematically, for a signalx(t), the continuous wavelet transform [20] is expressed as

CWT (a, b) =
1√
a

∫

∞

−∞

x(t)g

(

t− b

a

)

dt (1)

whereg(·) is the mother wavelet. Similarly,a is the scale factor andb is the translation factor. Botha and b are varies
in continuous manner in continuous wavelet transform . In order to remove the redundancy due to continuous coefficients,
discrete Wavelet transform has been introduced which has been discussed in next subsequent subsection.

B. Discrete Wavelet Transform

The discrete wavelet transform (DWT) implements in order todecompose a discretized signal into different resolution
levels. The DWT reduces the substantial redundancy of CWT. In the multiresolution analysis (MRA), the wavelet function
generates the detail coefficients of the decomposed signal and the scaling function generates the approximation coefficients of
the decomposed signal. The DWT can be expressed withg as the mother wavelet

DWT (m, k) =
1

√

am
0

∑

n

x(n)g

(

k − nb0a
m
0

am
0

)

(2)

wherek is an integer. The scaling parameter and translation parameter a andb vary in the discrete manner. The time signal
S[n] decomposed in to detailedd1(n) and smoothedc1(n) employing high pass(h(n)) and low pass filters(l(n)). Thus the
detail version contains high frequency components than thesmooth versionc1(n). Mathematically, they are specified [21] as

c1(n) =
∑

k

h(k − 2n)c0(k) (3)

d1(n) =
∑

k

g(k − 2n)c0(k) (4)

wherec0(n) is the discretised time signal (sampled version ofS0(n)). The outputs of the two filters are down sampled by
a factor of2 in order to obtain the DWT coefficients. The output of the low pass filter is called the approximation coefficients
and the output of the high pass filter is called as the detail coefficients. The approximation coefficients are further fed to the
low pass and high pass filter and the process is repeated. The high pass and low pass filters are called as the ‘Quadrature
mirror filters’ and are related by the equation
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Fig. 1: Block diagram of DWT decomposition

h[L− 1− n] = (−1)nl(n) (5)

where,L is the length of filter. The basic block diagram of DWT is shownin Fig.1.

As DWT is frequency domain analysis, it requires more time than the time domain analysis. The Second Generation Wavelet
Transform (SGWT) overcomes the drawbacks of the DWT which ispresented in the subsequent subsection.

C. Second Generation Wavelet Transform

The second generation Wavelet Transform (SGWT) is the variant of WT. The Lifting scheme (LS) based SGWT is similar
to the traditional DWT. The SGWT consists of the iterations of the three operations as split, predict and update [?], [?], [?]
as shown in Fig.2.

• Split: In the analysis of SGWT, first the signalS[n] is divided into two disjoint subsets as the even index setX [n]even

and the odd index setY [n]odd, which are correlated. This local correlation structure has the ability to predict and the
update is described below.

S[n] = X [n]even+ Y [n]odd (6)

SPLIT

+

-P U

+

X[n]

S[n]

Y[n]

Fig. 2: Block diagram representation of SGWT decomposition

• Predict : The details of the original signalS[n] are determined in this step using the wavelet decompositionas given
in (7). Using the predictor operatorP , Y [n] is predicted fromX [n].

d[n] = Y [n]− P (X [n]) (7)

• Update : The approximation coefficients of the original signalS[n] are determined by using (8). The update operator
U is applied to the details and the result is added withX [n] in this step.

C[n] = X [n] + U(d[n]) (8)

The process is further iterate with the approximation generated at the first level.
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III. T HEORY OF THEFEATURE EXTRACTION

A. Feature extraction

The input to the classifiers has been extracted features fromthe output of the signal decomposition instead of directly using
the raw data in ordered to reduce the computational burden. The quantitative analysis in terms of features like the energy
content, the standard deviation (STD), the cumulative sum (CUSUM) and the entropy of the transformed signal has been
performed to reduce the classification error. The basis of choosing the features has been explained below along with the proper
expressions [22].

• Energy : According to Parseval’s theorem the energy of the distorted signal will be partitioned at different resolution levels
in different ways depending on the power quality disturbances signals. So, it has been established that energy distribution
pattern changes when the amplitude and frequency of the signal changes [23] and [5].

Energy EDi =
1

N

N
∑

j=1

|Dij |2 (9)

wherei = 1, 2, 3, . . . , l (level of decomposition) andN is the number of samples in each decomposed data.D stands for
detail coefficient.

• Entropy : The spectral entropy of the non-stationary power signal disturbances is an effective parameter for the classifica-
tion of the signal. The entropy value for low frequency disturbances like the voltage swell, the voltage sag, the momentary
interruption and the pure undistorted sinusoidal signal isminimum. The harmonics contained in the signals such as sag
with harmonics, swell with harmonics have a comparatively high entropy value. For flicker type signals the entropy value
is minimum. Similarly in case of the short duration non-stationary power signal disturbances such as the notches and the
spikes have very low entropy values. While transients have relatively higher entropy value [8].

Entropy ENTi = −
N
∑

j=1

D2

ij log(D
2

ij) (10)

• Standard deviation : Assuming a zero mean, the standard deviation can be considered as a measure of the energy of
the considered signal. Standard deviation has been employed to differentiate the low frequency and the high frequency
signals [5].

Standard deviation σi =





1

N

N
∑

j=1

(Dij − µi)
2





1

2

(11)

• CUSUM : The cumulative sum method implements the samples for the localization of the distortion in the signal. The
CUSUM has been computed by the sum of the consecutive samplesof the power quality signal after being passed through
the aforementioned transforms [24].

CUSUM CMi =

N
∑

j=1

(Dij − µi)
2 (12)

whereMean µi =
1

N

∑N

j=1
Dij

These four features have been extracted from the output of the transformation. At each level four features have been extracted,
so for each signal in WT4 ∗ 7 feature vector have been formed. After calculating the features for the complete data sets, the
feature vectors are normalised between[0, 1] by considering the maximum value of the corresponding feature vectors as the
base. However, the normalisation is one of the important steps of pre processing of the data before classification. This vector
normalisation has been carried out in order to avoid the influence of high range feature vectors over low range ones. The
extracted features have been fed as put to the classifiers.

IV. CLASSIFICATION APPROACH

The extracted features are fed as inputs to the classifier such as HMMs and the RF.

A. Hidden Markov models (HMMs)

The HMMs have been applied to feature vector extracted from the coefficient in order to determine the maximum likelihood
in the data set. The HMM, extension of the Markov model in which the stochastic process is not directly observable through
another set of stochastic processes. However, an HMM can be defined asλ = (M,N, π,A,B) where the parameterN denotes
the number of states of the model, M is the number of distinct observation symbols per state,π is the initial state distribution
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TABLE I: Power signal Class labels of synthesis signal

PQD events Class

Sag CL1

Swell CL2

Interruption CL3

Oscillatory transient CL4

Flicker CL5

Harmonics CL6

Sag + Harmonics CL7

Swell + Harmonics CL8

Notch CL9

Spike CL10

vector, similarly, A denotes the state transition probability and finally B is observation probability matrices respectively. A
discrete HMM is explained in [20], [8] through the model of individual states.

Like other classifiers, the HMMs operation has been partitioned into the training and the testing stage of dataset. The HMM
training model uses both continuous and discrete density modelling and also employs the Baum-Welch algorithm to construct
the HMMs [25]. Starting with a very simple prototype system,the HMMs are repeatedly modified and re-estimated until
the required level of model complexity and performance is reached. In this study, ten different HMMs has been trained for
ten different disturbance classes. For this classificationprocess, the logarithmic probability of each model output has been
determined for the unknown input signals. In order to develop a proper HMM, the selection of the optimum number of state
and the density function are very important but there is no explicit rule for the selection of these factors except the application
type and the parameters. In this work, three states has been selected to stipulate the output with the Gaussian mixtures function.
The prior distribution has been used over the state transition to favour the transitions in order to stay in the same state. The
prior is multiplied by the likelihood function and then normalised according to the Bayes theorem. The CA depends on the
number of matching of the testing with the trained model using the equation

V. POWER QUALITY DISTURBANCE MODEL

The theory described in Section-II has been used to compute the approximation and detail coefficients up to fourth finer
levels using the DWT and MODWT. The PQD signals are simulatedin MATLAB with sampling frequency is3.2 kHz [26].
Class labels assigned to PQ signals of synthesized signals are given in Table I.

VI. D ECOMPOSITION OFPQ SIGNALS

A. Pure Sinusoidal Voltage Signal

A sinusoidal voltage signal is considered in Fig.3. Using DWT and SGWT the signals are decomposed up to four decomposi-
tion levels which are shown in Fig.3 along with the original sine wave. The horizontal axis represents time in second in terms of
samples and the vertical axis represents the amplitude of voltage signal in volt(V). Both DWT and SGWT has been implemented
on the aforementioned PQ signals in order to carry out the analysis. Using the DWT and the SGWT decomposition, similar
types of waveforms are produced at the respective decomposition level along with the original waveform. The decomposition
levels and the corresponding description of the pure sine wave with sag and swell are shown in Fig.4 and Fig. 5 respectively.

B. Pure sine wave with sag

A sinusoidal voltage signal with the sag is decomposed up to four levels using DWT and SGWT. These levels are shown
in Fig.4. Similar types of waveform at the respective decomposition levels are produced in both the decomposition methods.
The horizontal axis represents the samples and the verticalaxis represents amplitude in volt in per unit. The point of sag can
be observed at each decomposition level with both the methods. Similarly, the starting and end points of the disturbanceof
each decomposition levels are in the same alignment with theoriginal signal in both DWT and SGWT.

From the Fig.4 it is observed that, both the DWT and the SGWT decomposition have given similar type of waveforms in
respective decomposition levels.

C. Pure sine wave with swell

The procedure adopted is the same as the above case. In Fig.5,similar types of waveforms are found in the same
decomposition levels.

Similarly, the rest PQ disturbances are subjected to the process of decomposition using the DWT and the SGWT. Similar
types of waveforms are obtained from both types of wavelet transforms.
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Fig. 3: Localization of pure sine wave in (a) DWT decomposition (b) SGWT decomposition
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Fig. 4: Localization of sine wave with sag in (a) DWT decomposition (b) SGWT decomposition

D. Harmonic voltage signal

Consider the harmonic signal shown in Fig.6. By observing1st two levels of Fig.3 and Fig.6, it can be observed that for
sinusoidal signal the magnitude of1st two levels are almost zero and for harmonic signal,1st two levels have some magnitude.
Hence, it can be concluded that the waveforms of each level are different for different disturbance and this property helps in
classification of those disturbances.

E. Pure sine wave with harmonic and sag

The distortions are detected and localized in the finer levels of DWT and SGWT decomposition shown in Fig.7. By observing
1st two levels of Fig.4 and Fig.7, it can be observed that for sinusoidal signal with sag, the magnitude of1st two levels are
almost zero except the occurrence and end point of disturbance and for harmonic signal,1st two levels have some magnitude.
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Fig. 5: Localization of sine wave with swell in (a) DWT decomposition (b) SGWT decomposition
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Fig. 6: Sine wave with Harmonic (a) DWT decomposition (b) SGWT decomposition

Hence, it can be concluded that the waveforms of each level are different for different disturbance and this property helps in
classification of those disturbances. At same decomposition level, both DWT and SGWT show the same type of waveforms.

F. Pure sine wave with notch

A pure sine wave with notch is taken in consideration. The notches are clearly detected and localized in the finer levels of
DWT and SGWT decomposition shown in Fig.8.

Waveforms found in both SGWT and DWT are similar at the same decomposition levels. However SGWT s faster than the
traditional DWT.
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Fig. 7: Sine wave with Harmonic and sag (a) DWT decomposition(b) SGWT decomposition
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Fig. 8: Sine wave with Harmonic and sag (a) DWT decomposition(b) SGWT decomposition

G. Experimental PQD Signal generation

Three phase signals has been captured from an overhead powertransmission line panel of length360 km. The transmission
demo panel comprises a line model of voltage of380 kV. The equivalent circuit of the line isπ model with concentrated
parameters. The demo panel comprises of natural load600 MW. A 380 V is applied to transmission line panel and by
changing the load and creating fault, the various disturbances has been generated. These disturbances has been then stored in
a storage oscilloscope and then data has been extracted fromthe oscilloscope and then fed to the MATLAB. The details of the
experimental set up has been given in Fig.9. These three phase signals has been fed to MLP and HMMs for characterization
of the signals.
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Fig. 9: Experimental setup for three phase voltage signal collection

(a)

(b)

(c)

(d)

Fig. 10: Three phase real voltage signals with disturbances(a) Sag (b) Swell (c) Swell and harmonics (d) Sag and harmonics
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TABLE II: CA (%) of Pure Signals

CLASS
DWT SGWT

MLP HMMs MLP HMMs
CL1 86.56 76.21 88.99 77.09
CL2 86.96 98.32 88.21 98.34
CL3 90.01 0 90.98 0
CL4 89.94 98.01 91.12 98.45
CL5 87.79 92.01 88.02 93.12
CL6 91.11 47.61 92.67 48.63
CL7 87.34 43.32 89.36 44.78
CL8 88.47 73.60 90.67 74.37
CL9 90.34 100 91.02 100
CL10 89.07 98.02 91.13 98.45

TOTAL
%CA 89.82 71.02 90.89 72.32

TABLE III: CA (%) of real time three phase signals

CLASS DWT MODWT
MLP HMMs MLP HMMs

R1 81.50 71.32 84.90 72.72
R2 84.09 92.79 85.07 93.07
R3 84.31 0 85.94 0
R4 81.06 91.04 86.98 91.32
R5 84.13 89.94 87.04 90.07
R6 87.91 46.63 84.92 47.92
R7 84.90 32.34 85.62 33.45
R8 84.93 87.34 85.91 88.05
R9 82.86 97.61 86.43 98.23
TOTAL
%CA 84.31 61.52 87.31 62.02

VII. C LASSIFICATION RESULTS

A. Classification with simulated PQD signals

The classification accuracy is computed by the automated classifiers described in Section-III. The total10936 numbers PQD
signals are simulated with MATLAB. Each data set contains variable X (X1− standard deviation,X2− energy of details,
X3− entropy,X4−CUSUM) andL(L1, L2, . . . , L7 level of decomposition) which constitute28 features. For each classifier
70% of the total data has been treated as the training data and therest30% data are employing for the testing.

For ten different types of disturbances the overall classification accuracy (%CA) is also calculated individually. Theclassi-
fication accuracy is a measure of the performance index of thePQ defined [27] as

Classification Accuracy(%) =

Number of samples correctly classified
Total number of samples in the class

× 100 (13)

Though the over all%CA of MLP is better than the HMMs as HMMs fail to classify the slowdisturbance signals. HMMs
provides better%CA value in case of fast signals like transient and spike etc.

The classification of three phase PQ disturbances have been presented in Table III. From Table III, it can be observed that
%CA value of three phase signals are similar to the synthetic signal %CA value. The HMMs have been provided satisfactory
result for classification of fast signals as compared to MLP.

Similarly, the aforementioned proposed methods have also been implemented on fault classification in order to check
suitability of these methods.

B. Fault Classification

Under normal operating condition, the power system operates under balanced conditions with all the equipments carrying
normal currents and voltages within the prescribed limits.This healthy operating condition can be disrupted due to a fault in
the system. The power system faults are divided in to three phase balanced fault and unbalanced fault. The different types of
unbalanced fault are single line to ground fault(L−G), line to line fault (L−L), double line to ground (L−L−G). The balanced
faults are three phase fault which are severe type of fault. These faults can be two types such as line to line to line to ground
(L−L−L−G) and line to line to line fault (L−L−L).
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(a) L−G fault

(b) L−L fault

(c) L−L−G fault

(d) L−L−L−G fault

(e) L−L−L fault

Fig. 11: Three phase real voltage signals fault
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TABLE IV: CA (%) of three phase fault signals

CLASS
DWT MODWT

MLP HMMs MLP HMMs
L−G 75.21 80.0 82.00 80.71
L−L 83.76 78.76 82.01 83.52
L−L
−G 86.75 88.33 81.82 85.70

L−L−
L−G 74.14 81.17 85.33 91.58

L−L
−L 91.42 91.94 88.63 82.41

TOTAL
%CA 83.51 85.42 87.35 87.96

Three phase voltage signals with fault are captured from an overheadπ modeled transmission line of length360 (Km) like
the other cases. Total five types of fault signals are captured from the panel shown in Fig.9. Some of fault signals have been
presented in Fig.11. Fault signals have been captured from the oscilloscope and fed to MATLAB for analysis like the previous
cases. From the details of the WT and the ST contours four features have been extracted and fed to the classifiers in order to
recognise the type of fault. The recognition rate in terms of%CA is given in Table IV.

Different approaches have been implemented for calculation of %CA in Table IV. From these tables, it can be observed
that all these proposed techniques are working satisfactorily. The HMM has provided good results unlike the PQ disturbance
recognition.

VIII. C ONCLUSION

The useful features of the PQD signals have been extracted from the DWT and the SGWT decomposition. The classification
accuracy of these simulated and the three phase real signalsare obtained by SGWT and DWT with the combination of automatic
classifiers. From these aforementioned classifiers, it is observed that although DWT has yielded similar classificationaccuracy
like the SGWT.rom these aforementioned classifiers it is observed that though DWT has yielded, similar classification accuracy
like the SGWT. In other words, the SGWT is simple, robust and suitable for single as well as combined disturbances. An
intensive comparative assessment in terms of classification accuracy also leads to conclude that the suitability of SGWT is
better than convolution based DWT. The HHMs have classified the fast signals successfully. In case of fault recognition,HMMs
have provided satisfactorily result.

REFERENCES

[1] M. Bollen, “What is power quality?,”Electric Power Systems Research, vol. 66, no. 1, pp. 5–14, 2003.
[2] P. Janik and T. Lobos, “Automated classification of power-quality disturbances using svm and rbf networks,”IEEE Transactions on Power Delivery,

vol. 21, no. 3, pp. 1663–1669, 2006.
[3] S. Khokhar, A. Mohd Zin, A. Mokhtar, and N. Ismail, “Matlab/simulink based modeling and simulation of power quality disturbances,” inIEEE

Conference on Energy Conversion (CENCON), pp. 445–450, IEEE, 2014.
[4] D. O. Koval, “Power system disturbance patterns,”IEEE Transactions on Industry Applications, vol. 26, no. 3, pp. 556–562, 1990.
[5] A. Gaouda, M. Salama, M. Sultan, and A. Chikhani, “Power quality detection and classification using wavelet-multiresolution signal decomposition,”

IEEE Transactions on Power Delivery, vol. 14, no. 4, pp. 1469–1476, 1999.
[6] L. Angrisani, P. Daponte, M. D’apuzzo, and A. Testa, “A measurement method based on the wavelet transform for power quality analysis,” Power

Delivery, IEEE Transactions on, vol. 13, no. 4, pp. 990–998, 1998.
[7] D. Gabor, “Theory of communication. part 1: The analysisof information,” Journal of the Institution of Electrical Engineers-Part III: Radio and

Communication Engineering, vol. 93, no. 26, pp. 429–441, 1946.
[8] B. Biswal, M. Biswal, S. Mishra, and R. Jalaja, “Automatic classification of power quality events using balanced neural tree,” Industrial Electronics,

IEEE Transactions on, vol. 61, no. 1, pp. 521–530, 2014.
[9] R. A. Brown and R. Frayne, “A fast discrete s-transform for biomedical signal processing,” inEngineering in Medicine and Biology Society, 2008. EMBS

2008. 30th Annual International Conference of the IEEE, pp. 2586–2589, IEEE, 2008.
[10] I. Daubechies, “Orthonormal bases of compactly supported wavelets,”Communications on pure and applied mathematics, vol. 41, no. 7, pp. 909–996,

1988.
[11] A. G. Hafez, E. Ghamry, H. Yayama, and K. Yumoto, “A wavelet spectral analysis technique for automatic detection of geomagnetic sudden

commencements,”Geoscience and Remote Sensing, IEEE Transactions on, vol. 50, no. 11, pp. 4503–4512, 2012.
[12] D. B. Percival and A. T. Walden, “Wavelet methods for time series analysis (cambridge series in statistical and probabilistic mathematics),” 2000.
[13] C.-Y. Lee and Y.-X. Shen, “Optimal feature selection for power-quality disturbances classification,”Power Delivery, IEEE Transactions on, vol. 26,

no. 4, pp. 2342–2351, 2011.
[14] B. Panigrahi and V. R. Pandi, “Optimal feature selection for classification of power quality disturbances using wavelet packet-based fuzzy k-nearest

neighbour algorithm,”IET generation, transmission & distribution, vol. 3, no. 3, pp. 296–306, 2009.
[15] A. S. Yilmaz, A. Subasi, M. Bayrak, V. M. Karsli, and E. Ercelebi, “Application of lifting based wavelet transforms to characterize power quality events,”

Energy conversion and management, vol. 48, no. 1, pp. 112–123, 2007.
[16] A. K. Ghosh and D. L. Lubkeman, “The classification of power system disturbance waveforms using a neural network approach,” Power Delivery, IEEE

Transactions on, vol. 10, no. 1, pp. 109–115, 1995.
[17] S. Hasheminejad, S. Esmaeili, and S. Jazebi, “Power quality disturbance classification using s-transform and hidden markov model,”Electric Power

Components and Systems, vol. 40, no. 10, pp. 1160–1182, 2012.
[18] M. B. I. Reaz, F. Choong, M. S. Sulaiman, F. Mohd-Yasin, and M. Kamada, “Expert system for power quality disturbance classifier,” Power Delivery,

IEEE Transactions on, vol. 22, no. 3, pp. 1979–1988, 2007.



13

[19] S. Mishra, C. Bhende, and B. Panigrahi, “Detection and classification of power quality disturbances using s-transform and probabilistic neural network,”
Power Delivery, IEEE Transactions on, vol. 23, no. 1, pp. 280–287, 2008.

[20] S. Santoso, E. J. Powers, W. M. Grady, and P. Hofmann, “Power quality assessment via wavelet transform analysis,”Power Delivery, IEEE Transactions
on, vol. 11, no. 2, pp. 924–930, 1996.

[21] C. H. Kim and R. Aggarwal, “Wavelet transforms in power systems. i. general introduction to the wavelet transforms,” Power Engineering Journal,
vol. 14, no. 2, pp. 81–87, 2000.

[22] B. Panigrahi and V. R. Pandi, “Optimal feature selection for classification of power quality disturbances using wavelet packet-based fuzzy k-nearest
neighbour algorithm,”IET generation, transmission & distribution, vol. 3, no. 3, pp. 296–306, 2009.

[23] T. Zhu, S. Tso, and K. Lo, “Wavelet-based fuzzy reasoning approach to power-quality disturbance recognition,”Power Delivery, IEEE Transactions on,
vol. 19, no. 4, pp. 1928–1935, 2004.

[24] S. Mohanty, A. Pradhan, and A. Routray, “A cumulative sum-based fault detector for power system relaying application,” IEEE Transactions on Power
Delivery, vol. 23, no. 1, pp. 79–86, 2008.

[25] L. R. Rabiner, “A tutorial on hidden markov models and selected applications in speech recognition,”Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286,
1989.

[26] S. Upadhyaya and S. Mohanty, “Power quality disturbance detection using wavelet based signal processing,” inIndia Conference (INDICON), 2013
Annual IEEE, pp. 1–6, IEEE, 2013.

[27] M. Biswal and P. K. Dash, “Measurement and classification of simultaneous power signal patterns with an s-transformvariant and fuzzy decision tree,”
Industrial Informatics, IEEE Transactions on, vol. 9, no. 4, pp. 1819–1827, 2013.


